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Course Overview

Today’s Overview Lecture:
Historical perspective and motivation
Representation learning as core
principle
Feed-forward networks (FNNs)
Combined Actuarial Neural Networks
CNNs, RNNs, Transformers (in brief)
Applications and future directions

Future Lectures:
Detailed review of FNN
architecture
Transformers and attention
mechanisms
LocalGLMnet for
interpretability
Training and optimization
Foundation Models
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Introduction and Motivation

Why Deep Learning in Actuarial Science?

Traditional approach: Manual feature engineering, model
specification

Modern challenges: High-dimensional data, complex interactions,
unstructured data

Deep learning promises: Automated feature learning, universal
approximation

Actuarial opportunity: Better risk assessment, improved predictions,
novel data sources

Deep learning allows us to move from hand-crafted features to learned
representations
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Introduction and Motivation

Historical Perspective: The Evolution - 1

1943: McCulloch–Pitts neuron formalizes a logical model of a neuron
(McCulloch & Pitts, 1943).

1958: Rosenblatt’s perceptron (Rosenblatt, 1958).

1969: Minsky–Papert highlight perceptron limits and help trigger the
first AI winter (Minsky & Papert, 1969).

1986: Backpropagation popularized (Rumelhart, Hinton, & Williams,
1986).

1989, 1991: Universal Approximation Theorem for MLPs (Cybenko,
1989; Hornik, 1991).

1997, 1998: LSTM for long-range sequence memory (Hochreiter &
Schmidhuber, 1997); LeNet-5 for digit recognition (LeCun, Bottou,
Bengio, & Haffner, 1998).

2006: Deep learning renaissance via unsupervised pretraining (Hinton,
Osindero, & Teh, 2006).
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Introduction and Motivation

Historical Perspective: The Evolution - 2

2012: AlexNet revolutionizes vision with GPU training (Krizhevsky,
Sutskever, & Hinton, 2012).

2014, 2015-2016: Seq2Seq and residual networks extend depth and
stability (Sutskever, Vinyals, & Le, 2014; He, Zhang, Ren, & Sun,
2016).

2017: Unifying architecture:Transformer architecture and scaled
dot-product attention (Vaswani et al., 2017).

The Transformer model started off as a clever way to perform Seq2Seq
tasks. Decomposing it into the encoder and decoder pieces led to decoder
only models, which are now the standard within LLMs.
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Introduction and Motivation

Historical Perspective: The Evolution - 3

2018+: Deep learning enters actuarial practice

2020–2022: Foundation models as a new paradigm
GPT-3 shows few-shot generalization at scale (Brown et al., 2020);
BERT popularizes bidirectional pretraining and CLS token.(Devlin,
Chang, Lee, & Toutanova, 2018).

Foundation model framing and risks (Bommasani et al., 2021).

Instruction following with human feedback (Ouyang et al., 2022).

2022–2024: Reasoning-focused training and prompting
Chain-of-thought and zero-shot CoT (Wei et al., 2022; Kojima, Gu,
Reid, Matsuo, & Iwasawa, 2022).

Self-consistency improves multi-step reasoning (Wang et al., 2022).
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Introduction and Motivation

Scaling Laws

Key insight: Depth + data + compute (GPUs/TPUs) → predictable
scaling. Compute-optimal training laws guide model and dataset sizing
(Kaplan et al., 2020; Hoffmann et al., 2022).
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Introduction and Motivation

Practical Successes of Deep Learning

Computer vision starting with AlexNet architecture of Krizhevsky,
Sutskever and Hinton (2012)

Speech recognition (Hannun, Case, Casper et al. 2014).

Natural language processing, e.g. Google’s neural translation machine
(Wu, Schuster, Chen et al. 2016)

Analysis of GPS data (Brébisson, Simon, Auvolat et al. 2015)

Winning method in 2018 M4 time series forecasting competition
(Makridakis, Spiliotis and Assimakopoulos 2018a).

Analysis of tabular data (Guo and Berkhahn 2016) (plus other Kaggle
competitions)
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Introduction and Motivation

Deep Learning Worked!
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Representation Learning: The Core Principle

The Feature Engineering Problem

Traditional Actuarial Approach:
Manual variable selection
Domain expertise required
Interactions specified by hand
Time-consuming process

Example: French MTPL pricing
Must decide: include Age2?
Age × Region?
Hundreds of possible interactions

The Curse of Dimensionality:
Telematics: 1000s of
variables
Text data: unstructured
Images: pixel-level data
Time series: temporal
dependencies

Manual feature engineering becomes infeasible!
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Representation Learning: The Core Principle

Representation Learning: Automated Feature Discovery

Definition: Learning transformations of data that make it easier to
extract useful information

Key idea: Let the model discover the features

Traditional examples: PCA and Partial Least Squares (PLS)

Deep learning approach: Hierarchical feature learning
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Representation Learning: The Core Principle

Fashion-MNIST Example: Dataset Overview

Fashion-MNIST dataset contains 70,000 grayscale images (28x28
pixels) of clothing items.

Task: Classify the type of clothing.

Ideal testbed for comparing representation learning approaches.
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Representation Learning: The Core Principle

Fashion-MNIST: Traditional PCA Limitations

Applying PCA directly to the images does not show much
differentiation between classes.

Linear dimensionality reduction fails to capture the complex patterns in
image data.

Manual feature engineering would be required to improve performance.
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Representation Learning: The Core Principle

Fashion-MNIST: Traditional PCA Results
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Representation Learning: The Core Principle

Representation Learning

Representation Learning is an ML technique where algorithms
automatically design features that are optimal for a particular task.

Traditional examples are PCA (unsupervised) and PLS (supervised).

The feature space is then comprised of learned features which can be
fed into an ML/DL model.

BUT: Simple representation learning approaches often fail when
applied to high dimensional data.

Representation learning at a glance: Given inputs X ∈ Rp and target
Y , learn a mapping ϕ : Rp → Rd with d ≪ p so that simple predictors on
Z = ϕ(X ) perform well (Bengio, Courville, & Vincent, 2013).
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Representation Learning: The Core Principle

Deep Learning

Deep Learning is a representation learning technique that
automatically constructs hierarchies of complex features to represent
abstract concepts.

Features in higher layers (closer to outputs) are composed of simpler
features from lower (closer to inputs) layers.

A typical example is a feed-forward neural network.

The principle: Provide raw data to the network and let it figure out
what and how to learn.
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Representation Learning: The Core Principle

Fashion-MNIST: Deep Learning Solution

We applied a deep autoencoder (a type of non-linear PCA) to the same
data.

Differences between some classes are now much more clearly
emphasized.

The deep representation automatically captures meaningful differences
between the images without much human input.

This is an example of automated feature/model specification.
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Representation Learning: The Core Principle

Fashion-MNIST: Deep Learning Results
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Representation Learning: The Core Principle

Fashion-MNIST: Learned Feature Density

Density plot of learned features from a deep autoencoder on the Fashion-MNIST
dataset, showing clear separation between clothing categories.
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Representation Learning: The Core Principle

From Representation to Prediction

Step 1: Deep layers learn representations

Step 2: Final layer performs prediction using learned features

Key insight: Deep network = Feature extractor + Predictor

Input X Learned Rep.
z(d :1)(X) Output µ(X)

Deep Layers Final Layer
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Representation Learning: The Core Principle

Evaluating representation quality: linear probing

One can report Linear probe accuracy to gauge quality of the
representation Z = ϕ(X ) (Alain & Bengio, 2017):

For multi-class, softmax head with cross-entropy

min
W ,b

−1
n

n∑
i=1

log
exp(w⊤

yi zi + byi )∑C
c=1 exp(w⊤

c zi + bc)
.

For regression, linear head with loss L

min
W ,b

1
n

n∑
i=1

L
(
yi , Wzi + b

)
.

Other types of probes can be used too.
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Representation Learning: The Core Principle

Why Depth is Important - 1

Depth in neural networks refers to the number of layers, allowing for
hierarchical feature learning.

Capturing deep interactions: Shallow networks can only model
simple, direct relationships between inputs and outputs.

Deeper layers build upon lower-level features: early layers detect basic
patterns (e.g., edges in images), while deeper layers combine them into
complex abstractions (e.g., objects or concepts).

This hierarchy enables the network to capture intricate, non-linear
interactions and dependencies in data that would require exponentially
more parameters in a shallow model.
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Representation Learning: The Core Principle

Why Depth is Important - 2

Theoretical support: Deep networks can approximate complex
functions more efficiently than shallow ones (universal approximation
theorem extensions).

Visualization of Layers 1 and 2 of a CNN (Zeiler & Fergus, 2014)
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Representation Learning: The Core Principle

Why Depth is Important - 3

Visualization of Layer 5 of a CNN (Zeiler & Fergus, 2014)
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Feed-Forward Neural Networks

Single Layer NN = GLM

Single layer neural network
Circles = variables
Lines = connections
The input layer holds the
variables...
...which are multiplied by
weights (coefficients) to get the
result.
A single layer neural network is
essentially a GLM!
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Feed-Forward Neural Networks

Deep Feedforward Net

Deep = multiple layers
Feedforward = data travels
from left to right
More complicated
representations of input data
are learned in the hidden layers.
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Feed-Forward Neural Networks

FCN generalizes GLM

Intermediate layers perform
representation learning.
The last layer is a (generalized)
linear model, where input
variables are the new
representation of the data.
You can strip off the last layer
and use the learned features in
another model, like XGBoost.

[Diagram: FCN generalizes GLM]
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Feed-Forward Neural Networks

Mathematical Foundation: FNN Architecture

Notation:

Input: X ∈ Rq0

Hidden layers: ℓ = 1, . . . , d with qℓ neurons each

Layer ℓ transformation: z(ℓ) : Rqℓ−1 → Rqℓ

Composition: z(d :1) = z(d) ◦ · · · ◦ z(1)

FNN regression function:

µϑ(X) = g−1
(
⟨w (d+1), z(d :1)(X)⟩ + w (d+1)

0

)
(1)

where g−1 is the inverse link function and ϑ contains all network
parameters.
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Feed-Forward Neural Networks

Pre- and Post-Activation in Neural Networks

Pre-activation: In each layer of a neural network, the inputs are
multiplied by the layer’s weights and added to biases, forming a linear
combination. This step computes the weighted sum: z = Wx + b,
where x is the input, W are weights, and b is the bias.

This linear transformation aggregates information from the previous
layer but remains linear without further processing.

Post-activation: The pre-activation output z is passed through a
non-linear activation function a = σ(z), such as ReLU or sigmoid.

The activation introduces non-linearity, enabling the network to model
complex patterns. Without it, the network would behave like a single
linear model regardless of depth.
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Feed-Forward Neural Networks

Importance of Non-Linearity in Activation Functions

Why non-linearity matters: Non-linear activations (e.g., ReLU,
sigmoid) allow networks to model arbitrary complex functions by
introducing bends and thresholds in the decision boundaries.

Without non-linearity, each layer would only perform linear
transformations, and stacking layers would collapse to a single linear
model—no matter the depth.

Contrast with linear activations: If all activations are linear (e.g.,
σ(z) = z), the entire network reduces to y = Wn · · · W1x + b,
equivalent to a single-layer linear regression. This limits the model to
linear relationships, failing on non-linear problems like XOR or image
classification.

Non-linearity enables universal approximation: Deep non-linear
networks can theoretically approximate any continuous function.
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Advanced Architectures: Deep Dive

From Vectors to Tensors

Traditional tabular data: X i ∈ Rq (1D tensor)

Extended tensor structures:

Time series: X1:t ∈ Rt×q (2D tensor)

Images: X1:t,1:s ∈ Rt×s×3 (3D tensor, RGB)

Panel data: Multiple instances over time (4D tensor)

Key challenge: How to design architectures that respect structure?

FNNs: Ignore spatial/temporal structure

CNNs: Exploit local patterns via convolution

RNNs: Capture sequential dependencies
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Advanced Architectures: Deep Dive

Convolutional Neural Networks: Motivation

Problem with FNNs for spatial/temporal data:

Full connectivity: Every input connects to every neuron

Parameter explosion: Image 100 × 100 × 3 → 30, 000 inputs!

No spatial awareness: Adjacent pixels treated independently

CNN solution (LeCun et al., 1998):

Local connectivity: Neurons connect to small regions (receptive
fields)

Parameter sharing: Same filter applied across all positions

Hierarchical learning: Low-level → High-level features
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Advanced Architectures: Deep Dive

Convolutional Neural Networks: Image
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Advanced Architectures: Deep Dive

1D CNN: Mathematical Formulation

Input: Time series X1:t ∈ Rt×q

1D CNN layer with q1 filters:
z(1) : Rt×q → Rt′×q1 (2)

where t ′ = ⌊ t−K
δ + 1⌋ (number of windows)

Each unit computed as:

z(1)
u,j = ϕ

(
w (1)

0,j +
K∑

k=1
⟨w (1)

k,j , X(u−1)δ+k⟩
)

(3)

K : Kernel size (window width)

δ: Stride (step size)

w (1)
k,j ∈ Rq: Filter weights

Parameters: (1 + Kq) × q1 total weights
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Advanced Architectures: Deep Dive

1D CNN: Intuition and Applications

Rolling window analogy:
Kernel = Window size
Stride = Step size
Filter = Pattern detector

Example parameters:
K = 3, δ = 1: Overlapping
K = 3, δ = 3: Non-overlapping

Actuarial applications:
Claims triangles: Detect
development patterns
Telematics: Speed-acceleration
patterns
Time series: Seasonal effects in
frequency

Advantages:
Captures local patterns
Translation equivariant
Efficient computation
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Advanced Architectures: Deep Dive

2D CNN: Spatial Pattern Recognition

Input: Spatial data X1:t,1:s ∈ Rt×s×q

2D CNN layer mapping:

z(1) : Rt×s×q → Rt′×s′×q1 (4)

Convolution operation:

z(1)
u,v ,j = ϕ

w (1)
0,j +

Kt∑
kt=1

Ks∑
ks=1

⟨w (1)
kt ,ks ,j , X(u−1)δt+kt ,(v−1)δs+ks ⟩

 (5)

Kernel: (Kt , Ks) - height and width

Stride: (δt , δs) - vertical and horizontal steps

Parameters: (1 + KtKsq) × q136/53



Advanced Architectures: Deep Dive

Deep CNN: Hierarchical Feature Learning

Composing multiple CNN layers:

Layer 1: Low-level features (edges, simple patterns)

Layer 2: Mid-level features (combinations)

Layer 3+: High-level abstractions
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Advanced Architectures: Deep Dive

Recurrent Neural Networks: Sequential Memory

Motivation: Process sequences of variable length with memory

Plain-vanilla RNN layer (final state):

z(1) : Rt×q → Rq1 (6)

Recurrent update at time u:

z(1)
u,j = ϕ

(
w (1)

0,j + ⟨w (1)
j , Xu⟩ + ⟨v (1)

j , z(1)
u−1⟩

)
(7)

Xu: Current input

z(1)
u−1: Previous hidden state (memory)

Parameters: q1(1 + q + q1) (shared across time)

Key insight: Same as FNN but with recurrent connection!38/53



Advanced Architectures: Deep Dive

RNN Diagram
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Advanced Architectures: Deep Dive

LSTM Architecture Diagram

LSTM cell structure showing gates and information flow (Zhang, Lipton, Li, &
Smola, 2023)
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Advanced Architectures: Deep Dive

LSTM: Long Short-Term Memory - 1

Problem: Vanilla RNNs suffer from vanishing gradients

LSTM solution (Hochreiter & Schmidhuber, 1997):

Memory cell cu: Long-term storage

Hidden state zu: Short-term output

Gates: Control information flow

Three gates regulate memory:

Forget gate f u = σ(Wf Xu + Vf zu−1)

Input gate iu = σ(WiXu + Vizu−1)

Output gate ou = σ(WoXu + Vozu−1)
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Advanced Architectures: Deep Dive

LSTM: Long Short-Term Memory - 2

Memory update:
cu = f u ⊙ cu−1 + iu ⊙ c̃u (8)
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Advanced Architectures: Deep Dive

GRU Architecture Diagram

GRU cell structure showing gates and information flow (Zhang et al., 2023)
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Advanced Architectures: Deep Dive

GRU: Gated Recurrent Unit

Simplified alternative to LSTM (Cho, van Merriënboer, Bahdanau, &
Bengio, 2014):

Two gates instead of three:

Update gate ou: How much past to keep

Reset gate ru: How much past to forget

Hidden state update:

zu = (1 − ou) ⊙ zu−1 + ou ⊙ z̃u (9)

where candidate state:

z̃u = tanh(WzXu + Vz(ru ⊙ zu−1)) (10)

Advantages: Fewer parameters than LSTM, often similar performance
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Advanced Architectures: Deep Dive

CNN vs RNN: When to Use Which?

Use CNNs when:
Local patterns matter
Translation invariance needed
Spatial/grid structure exists
Parallel processing required

Examples:
Telematics heatmaps
Geographic risk maps
Fixed-size triangles

Use RNNs when:
Sequential order crucial
Variable lengths common
Long-term dependencies
Temporal causality important

Examples:
Policy history modeling
Text processing (claims)
Time series forecasting

Hybrid approaches: CNN for feature extraction → RNN for sequences
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Advanced Architectures: Deep Dive

Embedding Layer – Categorical Data

One-hot encoding expresses the prior that categories are orthogonal.

The traditional actuarial solution is credibility.

Embedding layer prior: related categories should cluster together.
It learns a dense vector transformation of sparse input vectors and
clusters similar categories.

Can be pre-calibrated to MLE of GLM models (CANN proposal of
Wüthrich and Merz 2019).
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Advanced Architectures: Deep Dive

Autoencoder – Unsupervised Learning

An autoencoder is a network
trained to produce an output
equal to its input.
A "bottleneck" in the middle
restricts the dimension of the
encoded data.
It performs a type of non-linear
PCA.
The bottleneck layer expresses
the prior that the data can be
summarized in only a few
dimensions.

47/53



Advanced Architectures: Deep Dive

Transformers and Attention - Vaswani et al. (2017)

Key idea: Attention mechanism - “focus on what’s relevant”

Self-attention formula:

Attention(Q, K , V ) = softmax
(

QKT
√

dk

)
V (11)

where Q, K , V are query, key, value matrices

Advantages:

Parallel processing (unlike RNNs) = efficient computation on GPUs

Long-range dependencies

Somewhat interpretable attention weights

Full coverage in dedicated transformer lecture
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Advanced Architectures: Deep Dive

LocalGLMnet: Interpretability Focus

Key idea: Local linear models defined by neural network

Architecture:

Neural network learns coefficients of local GLM

Each combination of covariates recieves own GLM

Predicions made as sum over βj(Xj)Xj

Benefits:

Full interpretability for predictions

Captures heterogeneity

More regulatory compliance friendly than FNN

Detailed treatment in LocalGLMnet lecture
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Combined Actuarial Neural Networks (CANN)

CANN: Bridging Classical and Modern

Motivation:

GLMs are interpretable but may miss complex patterns

Deep networks are powerful but less interpretable

Can we combine the best of both worlds?

CANN Architecture (Wüthrich & Merz 2019):

µCANN(X) = g−1

⟨ϑ̂MLE, X⟩︸ ︷︷ ︸
GLM baseline

+ ⟨w (d+1), z(d :1)(X)⟩︸ ︷︷ ︸
Neural correction

 (12)
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Combined Actuarial Neural Networks (CANN)

CANN: Implementation Details

X

GLM (MLE)

Layer 1 Layer d

Σ

g−1

Neural Network

· · ·

GLM baseline

Neural correction

Training procedure:
1 Fit GLM using MLE, freeze parameters ϑ̂MLE

2 Train neural network to learn residual patterns; this adds corrections to
GLM predictions
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Combined Actuarial Neural Networks (CANN)

CANN: Advantages

Interpretability: GLM component provides baseline understanding

Performance: Neural network captures non-linear patterns

Stability: GLM ensures reasonable predictions even if NN fails

Diagnostic: NN contribution shows where GLM is insufficient

Connection to ResNet:

First term: residual/skip connection (input X directly to output)

Second term: classic FNN architecture for non-linear corrections

Interpretation: Linear GLM term + non-linear FNN for interactions not
captured by GLM
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Conclusion

Key Takeaways

Core principle: Representation learning automates feature engineering

Mathematical foundation: FNNs generalize GLMs through
composition

Advanced architectures: CNNs, RNNs, Transformers for specific data
types

Practical approach: CANN bridges traditional and modern methods
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